Predictive Analytics in Information Systems Research 1
نویسندگان
چکیده
This research essay highlights the need to integrate predictive analytics into information systems research and shows several concrete ways in which this goal can be accomplished. Predictive analytics include empirical methods (statistical and other) that generate data predictions as well as methods for assessing predictive power. Predictive analytics not only assist in creating practically useful models, they also play an important role alongside explanatory modeling in theory building and theory testing. We describe six roles for predictive analytics: new theory generation, measurement development, comparison of competing theories, improvement of existing models, relevance assessment, and assessment of the predictability of empirical phenomena. Despite the importance of predictive analytics, we find that they are rare in the empirical IS literature. Extant IS literature relies nearly exclusively on explanatory statistical modeling, where statistical inference is used to test and evaluate the explanatory power of underlying causal models, and predictive power is assumed to follow automatically from the explanatory model. However, explanatory power does not imply predictive power and thus predictive analytics are necessary for assessing predictive power and for building empirical models that predict well. To show that predictive analytics and explanatory statistical modeling are fundamentally disparate, we show that they are different in each step of the modeling process. These differences translate into different final models, so that a pure explanatory statistical model is best tuned for testing causal hypotheses and a pure predictive model is best in terms of predictive power. We convert a well-known explanatory paper on TAM to a predictive context to illustrate these differences and show how predictive analytics can add theoretical and practical value to IS research.
منابع مشابه
Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...
متن کاملP-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy
The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...
متن کاملSensing the Future: Designing Predictive Analytics with Sensor Technologies
As digital technologies become prevalent and embedded in the environment, "smart" everyday objects like smart phone and smart homes have become part and parcel of the human enterprise. The ubiquity of smart objects that produce ever-growing streams of data presents both challenges and opportunities. In this paper, we argue that extending these data streams, referred to as "predictive analytics"...
متن کاملContext-Aware Analytics in MOM Applications
Manufacturing Operations Management (MOM) systems are complex in the sense that they integrate data from heterogeneous systems inside the automation pyramid. The need for context-aware analytics arises from the dynamics of these systems that influence data generation and hamper comparability of analytics, especially predictive models (e.g. predictive maintenance), where concept drift affects ap...
متن کامل